Chlamydomonas IFT70/CrDYF-1 Is a Core Component of IFT Particle Complex B and Is Required for Flagellar Assembly
نویسندگان
چکیده
DYF-1 is a highly conserved protein essential for ciliogenesis in several model organisms. In Caenorhabditis elegans, DYF-1 serves as an essential activator for an anterograde motor OSM-3 of intraflagellar transport (IFT), the ciliogenesis-required motility that mediates the transport of flagellar precursors and removal of turnover products. In zebrafish and Tetrahymena DYF-1 influences the cilia tubulin posttranslational modification and may have more ubiquitous function in ciliogenesis than OSM-3. Here we address how DYF-1 biochemically interacts with the IFT machinery by using the model organism Chlamydomonas reinhardtii, in which the anterograde IFT does not depend on OSM-3. Our results show that this protein is a stoichiometric component of the IFT particle complex B and interacts directly with complex B subunit IFT46. In concurrence with the established IFT protein nomenclature, DYF-1 is also named IFT70 after the apparent size of the protein. IFT70/CrDYF-1 is essential for the function of IFT in building the flagellum because the flagella of IFT70/CrDYF-1-depleted cells were greatly shortened. Together, these results demonstrate that IFT70/CrDYF-1 is a canonical subunit of IFT particle complex B and strongly support the hypothesis that the IFT machinery has species- and tissue-specific variations with functional ramifications.
منابع مشابه
Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly
Cilia are microtubule-based organelles that assemble via intraflagellar transport (IFT) and function as signaling hubs on eukaryotic cells. IFT relies on molecular motors and IFT complexes that mediate the contacts with ciliary cargo. To elucidate the architecture of the IFT-B complex, we reconstituted and purified the nonameric IFT-B core from Chlamydomonas reinhardtii and determined the cryst...
متن کاملChlamydomonas IFT172 Is Encoded by FLA11, Interacts with CrEB1, and Regulates IFT at the Flagellar Tip
The transport of flagellar precursors and removal of turnover products from the flagellar tip is mediated by intraflagellar transport (IFT) , which is essential for both flagellar assembly and maintenance . Large groups of IFT particles are moved from the flagellar base to the tip by kinesin-2, and smaller groups are returned to the base by cytoplasmic dynein 1b. The IFT particles are composed ...
متن کاملIdentification and Characterization of Components of the Intraflagellar transport (IFT) Machinery: a Dissertation
Intraflagellar transport (IFT), the bi-directional movement of particles along the length of flagella, is required for flagellar assembly. The IFT particles are moved by kinesin II from the base to the tip of the flagellum, where flagellar assembly occurs. The IFT particles are then moved in the retrograde direction by cytoplasmic dynein 1b/2 to the base of the flagellum. The IFT particles of C...
متن کاملChlamydomonas IFT25 is dispensable for flagellar assembly but required to export the BBSome from flagella
Intraflagellar transport (IFT) particles are composed of polyprotein complexes IFT-A and IFT-B as well as cargo adaptors such as the BBSome. Two IFT-B subunits, IFT25 and IFT27 were found to form a heterodimer, which is essential in exporting the BBSome out of the cilium but not involved in flagellar assembly and cytokinesis in vertebrates. Controversial results were, however, recorded to show ...
متن کاملProtein Particles in Chlamydomonas Flagella Undergo a Transport Cycle Consisting of Four Phases
We used an improved procedure to analyze the intraflagellar transport (IFT) of protein particles in Chlamydomonas and found that the frequency of the particles, not only the velocity, changes at each end of the flagella. Thus, particles undergo structural remodeling at both flagellar locations. Therefore, we propose that the IFT consists of a cycle composed of at least four phases: phases II an...
متن کامل